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ABSTRACT

We compute the skewness of the galaxy distribution arising from the nonlinear
evolution of arbitrary non-Gaussian initial conditions to second order in perturba-
tion theory including the effects of nonlinear biasing. The result contains a term
which is identical to that for a Gaussian initial distribution plus terms which de-
pend on the skewness and kurtosis of the initial conditions. The results are model
- dependent; we present calculations for several toy models. At late times, the leading

contribution from initial skewness decays away and becomes increasingly unimpor-
tant, but the contribution froni initial kurtosis, previously overlooked, has the same
time dependence as the Gaussian terms. Observations of a linear dependence of the
normalized skewness on the rms density fluctuation therefore do not necessarily rule
out initially non-Gaussian models. Although initial conditions could in principle
have negative skewness and kurtosis, we present bounds that show that to second
order in perturbation theory, skewness necessarily grows more positive with time.
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1. Introduction

It is often assumed that the primordial fluctuations that generated large-scale cosmologi-
cal structure were effectively Gaussian. This simplification is not without some justification;
the simplest realizations of inflation do result in Gaussian fluctuations in the inflating scalar
field, that are then imparted to the matter. Small departures of the primordial distribution
from pure Gaussian may be unimportant: nonlinear gravitational evolution induces a skew-
ness that grows with time relative to the linearly evolved initial skewness, and the observed
non-Gaussian nature of the distribution of galaxies on small scales may be entirely the result
of nonlinear gravitational clustering. It has certainly been possible to generate a wide range
of “present-day” universes in numerical simulations starting from Gaussian initial conditions,"
and there are indications in the simulations that the initial power spectrum is forgotten on
scales that have evolved into the strongly nonlinear regime. The popularity of Gaussian
models is not diminished by the possibilities they present for exact calculations.

However, the source of density fluctuations is at present an open question, and interesting
models such as cosmic strings and global texture do provide fluctuations which are non-
Gaussian initially. As observations reach to larger and larger scales, it is becoming possible
to measure statistical properties of structure that are more closely related to conditions in
the very early universe, and it may be possible to determine by measurement whether the
primordial fluctuations weré in fact Gaussian or not. One quantitative measure of departures
from a Gaussian is the third moment of the density contrast, or skewness. A number of
analytic and numerical investigations of the evolution of skewness have been undertaken
(Peebles 1980; Coles & Frenk 1991; Bouchet et al. 1992; Juszkiewicz & Bouchet 1992; Lahav
et al. 1992; Weinberg & Cole 1992; Luo & Schramm 1993; Juszkiewicz et al. 1993; Coles et
al. 1993). Measurements of the volume-averaged skewness have been given for the QDOT
survey (Saunders et al. 1991; Coles & Frenk 1991) and the 1.2Jy IRAS survey (Bouchet et
al. 1993). - .

In this paper we compute the evolution of skewness in second-order perturbation theory
for arbitrary non-Gaussian initial density fields. A similar calculation for some special cases
has been done by Luo & Schramm (1993). The calculation breaks naturally into successive
stages. In § 2.1 we introduce second order perturbation theory results from gravitational
instability. In § 2.2 we evaluate the induced skewness for Gaussian initial éonditions; in § 2.3
- we compute the additional terms that arise from non-Gaussian initial conditions, includ-
ing a term from the initial four-point function previously overlooked, and in § 2.4 we show
the further effects of nonlinear bias. We find that all three sources of skewness (nonlinear
contributions from Gaussian initial conditions, initial non-Gaussian correlations, and non-
linear bias) can contribute -terms of comparable amplitude and identical time dependence
to the skewness of the gala.xy distribution, and thus all must be con81dered in 1nterpret1ng
observations.
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2. Gravity and Skewness

2.1. Perturbation Theory

We study fluctuations in the cosmological mass density, é(x,t) = [p(x,t) — p|/p, and
in Section 3 below in the possibly different galaxy number density 64 = éng/fg. Statistical
properties can be summarized in the n-point moments, (6™ ), or their irreducible reductions
&n. By construction, (§(x)) = 0, and the next few moments are

(86(x1)b6(z2)) = &12,

(8(z1)8(z2)6(3)) = (123,
(8(z1)8(x2)8(x3)6(x4)) = €12 €34 + €13 E24 + €23 £14 + M1234. (1)

For a homogeneous and isotropic density distribution, the irreducible two-, three-, and four-
point functions €12, (123, and 771234 depend only on relative distances, £12 = &(|z] — z9)),
etc., and not on absolute positions and orientations.

To linear order in perturbation theory, the density contrast grows with time by an overall
scale factor, 6(z,t) = A(t)é(=x,tp), where 6(x,tp) is the primordial seed fluctuation at an
early initial time ¢ty and A(ftg) = 1. For the simplest case (matter dominated, 2 =71,
k= A =0), A(t) x a(t), the cosmological expansion factor, and appropriate normalizations
can be chosen such that A(t) = a(t). In linear theory, initially Gaussian fluctuations remain
Gaussian: the distribution has no irreducible moments beyond the two-point function, and
in particular has vanishing skewness, ¢ = 0. )

For nonlinear fluctuations, in perturbation theory we expect to generate a series with
terms of all orders arising from couplings between modes,

§ =61 4+6@ 4 63) 4. v (2)

where §(7) ~ O(6g") (see Goroff et al. 1986). These higher order terms induce nonvanishing
higher order irreducible moments; terms up to order §(m=1) are required to compute ;.
Including the first correction, the three-point function is

¢= ({5(1) +6@ 4. .]3) = ([5(1)]3> +3([5(1)]25(2)) 4. 3)

For Gaussian initial conditions, the ([6(1)]3) term vanishes, but in general the next term
([6D]126(2)) does not. :

In gravitational instability, the second order contribution §6(2) is (Peebles 1980; Fry 1984;

Goroff et al. 1986) H
5 T -2 .
6@ = 6% = 60 + ZA A ij, (4)
where : P
B2 )

 Al) =/ rrart (5)
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In this and following, expressions on the right-hand side are to be evaluated for the linearly
evolved initial distribution: § = a(t)é(x,tp). Throughout, zero subscripts denote quantities
derived from linear evolution of the initial density field, & = a(t)é(z, tg), (o = a3()¢ (z5,10),
etc. Thus, including the first correction in equation (3), the third moment becomes

15 6
(= <63 + ?64 — 36%6;A; + ?52A,ijA,ij> , (6)

or, with equation (5),

15 d3z ’ 1
¢= ) +(Fot@) - 3 [ @b
6 /d3xdd3 z!

7J ar am

! " 1
)6V i) ™

2.2. Skewness for a Gaussian Initial Distribution

For a Gaussian initial distribution, equation (7) reduces to a simple expression. All
higher order irreducible moments vanish, so that (g = 0, and from equation (1) with g =0
we have for the fourth moments

(84=x)) = 362(0),
(83(z)6 3(x)8(z)) = < <63(=c)6<z )); = &0 — ),
(8%(z)6(")8(z")) = 6(0)5(::: —z") +2¢(2' - z)é(2" - x) (8)

-

Applying V;F(z! — ) = —V.F(z' — z), and translating the origin of integration leads to

_ 15 2 _q [&7
(=7 BE07 -3 [ ek i
6 [d3z' d3z" " oo 1 1
v | T [€0)E(z" — =) + 2£(=")E(=")] H (9)

Integrated by parts, the second term becomes —¢2(0). In the double integral, the term
containing &(z' — &), also integrated by parts, gives £2(0), while, using the identity
1 3z — 65 .
R vV i i M. A _5. 6
ViV; Iz e 3 p(z) (10)
(6p is the Dirac é-function), the term containing £(z')é(z") becomes 2£2(0)/3. Thus, in
total, for Gaussian initial conditions

(e = 263(0), (11)
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a result first obtained by Peebles (1980). For future use, we note that combining the result
obtained by integration by parts with the result implied by using equation (10) gives

3.0 32 6 Po(2! - & ’ ;
Hel= [ T e -2 = 2400, (12)

dr 4w 313

In interpreting skewness, there are two reduced or normalized ratios that are useful to
consider. First, deviations from a Gaussian can be characterized by the ratios A, = £, /0®,
where 2 = £(0). For a distribution to be nearly Gaussian, the A, must be small. For the
third moment, the normalized skewness s = A3 is

' s = 43 = 2(0). (13)

When clustering is weak, £(0) < 1, then s < 1 also, and the distribution is indeed almost
Gaussian; but, since o grows as a(t), even for an initial Gaussian, departures from Gaussian
increase with time. Also commonly seen are the hierarchical amplitudes Sy, where &, =
Sp "1 For any nonlinear transformation of a weakly-correlated Gaussian, the leading
contribution to £ is of the hierarchical form with Sy, constant (see Fry & Gaztafiaga 1993).
For the case of Gaussian initial conditions, we see that gravitational instability gives

53,6' === 7 - (14)
Non-Gaussian initial conditions and nonlinear bias modify these simple results considerably.

2.3. Skeuwness for a Non-Gaussian Initial Distribution

For non-Gaussian initial conditions there are additional contributions to the skewness.
The leading term {83 ) = ¢(0) no longer vanishes, and there is also an additional contribution
to ([6V]26()) from the fofir-point function. The first term is 15 7(0)/7; the second can
again be integrated by parts, and gives —7(0). Using the translational invariance of 7 in the
final term, we arrive at

43z 'd3 " 1 1
C= QO+ + 300 +7 [ I M08 g (19)

or, using equation (10), the alternative form

¢ = Go(0) + 2 £3(0) + = m(0) + = ] (16)

where

32! 31" 6 Py(2' - &)

I{n]= s 4r  4n 21313
The difference between the complete reduction achieved in equation (11) and the inability to
do so for the non-Gaussian ¢ase can be traced to the difference between the connected and

n(0,0,z',2"). (17)
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disconnected parts of (). The Gaussian contribution to (62(z)6(z’ )6(z"")) separates into
a term that depends only on {(z' —z") and a term that depends only on £(z')£(z"), both of
which can be integrated, so that in equation (12), I[£] = 2£(0)/3. Certainly we expect that
1(0) gives an order-of-magnitude estimate of I [7], but for the connected four-point function
7(0,0,z', "), in general I[n] does not evaluate simply.

Without repeating the details, we note that a similar calculation gives a correction to the
two-point function also, (62 ) = ([6(1))2) +2 ([6V)26®)y | which for gravitational instability
is

€= 60(0) + 53 60(0)+ 3 1G], (18)

where [ [¢]is the integral analogous to equation (12) or equation (17) evaluated for ¢(0, =, z'.
From equation (16) and equation (18), we can write s as

_ 34 10m  6I[m] 13¢¢ 6¢l[¢o]
s—so+(7+7€02+7 50 - 145(? 7——{(5.3 a(t) (19)

where the factor inside parentheses is independent of time. Thus the second term grows as
o(t) « a(t). The calculation holds for £ < 1 and &, ~ o™. The hierarchical amplitude Sy is

5= 330 3¢ 10m 6I[n] 264 86I[G]
PTat) T T T T e e T g

(20)

The integral J [n] and thus the complete answer depends on the details of the four-point
function, as can be seen from a few “toy” models. Consider first the case of a white-
noise non-Gaussian model, i.e., a model in which the one-point density distribution p(4)
is non-Gaussian, but in which there are no spatial correlations. This class of models is
not physically realistic, but it provides a simple set of non-Gaussian models with which to
explore the dependence of the evolution of the density on the initial form of p(6). Messina
et al. (1990) have investigated a number of such models numerically (see also Weinberg &
Cole 1992). For these models, I [1] = 0, and we obtain

¢ = Q)+ S63(0) + 2 m(0). (21)

The requirements that the four-point function be symmetric and connected suggest more
realistic models built from two-point functions, one with the minimal three connections of
a tree, 1T, one where the points are connected in a clesed loop, 51, and one which links all
six possible pairs of points, 74:

nr = §12€23 €34 + (sym.) (16 total terms),
nL = €12 €23 €34 €41 + (sym.) (3 total terms),
N4 = §12 £13€14 £23 24 34. (22)

For n(0,0,z',z"), these rmodels give
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nr = 4£0)6'€" + 2€'¢" (€' + €") + €[26(0)(¢' + €") + (€' + €)Y,
L =€2€6" + 26(0)¢'e"e,
na = £(0)e"2¢"%¢, (23)

where ¢/ = £(z'), £ = ¢(2"), and € = £(]z’ — 2"|). In computing the integral over angles in
equation (16), terms in 7 that are isotropic, i.e., those that do not contain &, vanish, as did
analogous terms in equation (9). Since £(z) < £(0), the tree model gives

I[T’T] _ / a3z 32" 6P2(§:' . 5:")
4r 47w 33
- [ 32 d32" 6Py (! - 2" 2 1

< [T e = 2eo s = Saror (20

similarly, the other models give upper bounds 4 77(0)/9 and 274(0)/3. Numerical investi-

gation of these toy models shows that the numerical value of the integral depends on the

functional dependence of £(z) as well as the particular model of the four-point function,

and is usually considerably smaller than these conservative upper limits. Table 1 lists some
numerical results.

5{25(0)(51 +£n) +fl2 _L_é-uz +2£I€H]

As a second class of interesting non-Gaussian models, we consider the seed models ex-
amined by Scherrer & Bertschinger (1991) and by Scherrer (1992), in which the density field
is the convolution of a fixed density profile or set of density profiles with a distribution of
points. The global texture model (Gooding et al. 1992 and references therein), for example,

-can be described in this way. Here we will consider only a very simple class of seed models,
in which the seeds are identical and randomly distributed, so that the density perturbation
at ¢ is

8(z)=3_ f(z - =), (25)

where f(x) is the accretion pattern around a single seed. This is a special case of the more
“general models examined by Scherrer & Bertschinger (1991) and by Scherrer (1992). For
such a model (Scherrer & Bertschinger 1991) it is easy to show that .

én(z1,22,...,2N) = no/d3xf(fci —-z)f(ze — ) --- f(zy — ), (26)

:Where ng is the number density of the seeds. This equation is valid when f satisfies the

-integral constraint -
/ d3z f(z) = 0, (27)

which insures that (§) = 0. For these seed models, evaluation of the last term in equa-
“tion (16) can be difficult, and it is easier here to work from equation (15) In this equation,
using equation (26), the last term becomes
d3$l d3 " 1
0 O "
/ ir  4n —n(0,0,2,z )I ILJ] Ixul,U

d3.’z:ld3 n 5 ; 1 1
=1 47(' d -Tf (1) ( ) (.’.U )!m_m[!,t]rw;__mul,z]y (28)
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again valid when the seeds are randomly distributed. As an example, consider a simple model
where the density field around a seed is a positive spherical top hat of radius r; embedded
in a negative spherical tophat of radius rg, with r9 > r;. Specifically, we take

fO"gO’ r<ri,
flz) = { (29)
— 40, ry<r<ry

(r = |z]); the integral constraint given by equation (27) is satisfied by requiring that foV; =
goV2, where V] and V5 are the volumes of spheres of radius ry and rg, respectively. Finally,
we define the free parameter ¢t to be given by t = V1 /V5 = go/ fo, so that 0 < ¢t < 1. Then
equation (26) gives: -

6al0) = nabaaf [¢(F — D" + (11 - )] (30)

and equation (28) gives:

d31',d313” /] n 1 1 4 1 1
r——— ——— — f  e— o — —— — o
/ - 1 17(0,0,:::,:1! )l ,l’,]l "I'U n0V2g0 [3 (t 1) (t2 P +5)]. (31)

For comparison with the other models above, the integral I [n] here is

) -2 2.
I[n]= ST+ 7(0) (32)

The factor on the right hand side varies from 0 for ¢ = 0 to a maximum of 8/9 for ¢ = 2/3
to 2/3 fort = 1. ’ ’

2.4. Bias and Skewness

There is finally the additional possibility that the distribution of galaxies is not the same
as that of-the underlying mass density, that the locations where galaxies form are “biased.”
If the number density of galaxies is uniquely determined by the mass density, then we can
write n(x) as a functional, n(z) = F[p(z)]. As a simpler model, assume that n = f(p), a
simple function of the local density, and that near p = p we can write ngy as a power series
inp, ng=73 app®, or, equivalently g as asseries in §p, :

o0
Sg = bybk (33)
k=0

(Fry & Gaztafiaga 1993). The constant terin bg is chosen so that (64) = 0, and the usual
linear bias parameter is b = b;. It-is easy to compute the connected second and third
‘moments of the biased distribution in terms of the underlying mass distribution,

g =(82) = by + 2062y,

Co = (83) = 3¢5+ 6b2b€2 + 36%bary, (34)
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where £, and (, are given by equations (18) and (16) and we have again dropped higher-order
terms in both equations.

Including the bias contributions to the normalized sl\ewness s and the hierarchical am-
plitude S3, we obtain )

4 b 10 3b 61
s=so+(-3— 2+[—+ 2] + o]

7R |7 277 g
13 3b) ¢ GCOI[CO]
- [14+ ] &7 (35)
_S30 1 134 6by (10 3b2 mo , 6 I[mo]
Bty Tt R (7b )52 o €2
_ (26 4\ G 80I[p]
(21b+ ) 3 & (36)

At late times, the first term becomes increasingly less important, but the other contributions
from (p and 7y remain of the same relative importance for all time. For the models of
equation (22), these are small (and, strictly, if they are included, so should other higher
order terms), but for the seeded models, with ngVs < 1 and for any value of go, these
contributions are of order 1. For bias parameters by, of order 1, the bias contribution is also
of the same order as the 34/7 from gravitational instability.

3. Discussion

Our main results, equation (16) and (34) for ¢, equation (35) for s, or equation (36)
for S3, indicate that there are three significant contributions to the evolved skewness for
non-Gaussian initial conditions. First, there is a term which is simply the linearly evolved
initial three-point function or skewness, (g ~ a3(t) Secondly, we have the usual nonlinear
“Gaussw.n contribution (34/ 7)£0 ~ a4(t) Finally, there is a contribution, also proportional
to a*, that depends on the four-point correlation (kurtosis) of the initial density field, 79 ~
a4(t) a term which has previously been overlooked. In general, the initial skewness of the
density field need not dominate the skewness at late times; in equation (35), if sp < 5 and the
four-point contribution is nonnegative, then the time-dependent contribution will dominate
the linearly evolved initial skewness before perturbation theory breaks down. Alternatively,
if sp and the initial four-point function are sufficiently small, then the evolved skewness will
be indistinguishable from that for Gaussian initial conditions.

In the observations, both Coles & Frenk (1991) and Bouchet et al. (1993)‘ find that
skewness in the distribution of IRAS galaxies is consistent with gravitational evolution from
Gaussian initial:conditions. Our results are not ditectly applicable to these observations,
since observers measure volume-averaged two- and three-point functions, while our calcula-
tions strictly apply to properties of density fields measured at a point. However, the volume
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averaging is a linear filtering that, while it may modify the result by factors of order unity,
cannot add or remeve terms:

bw(z) = fd3m' W(:z') 8z — a:'),
fule:) = / B3z, By W(zh)W (zh) &z — ),

Cu(z1,72,73) = / ) dPeyd’y W(a] )W (22)W (23) ((; — 7), (37)
where W(z) is a suitably normalized windowing function. Juszkiewicz et al. (1993) have
calculated the skewness of the smoothed field for the Gaussian case, and they indeed find
that the results are qualitatively similar to what is seen for an unsmoothed field: { remains
proportional to {02(0), but the constant of proportionality depends on the assumed power
spectrum. The calculation is rather involved, even for the Gaussian case, and the results are
model:specific, depending on the particular window function (top-hat, Gaussian ball), on
the initial power spectrum, and for our case on the initial three- and four-point functions, so
we have not attempted to extend it to general non-Gaussian models, leaving that for specific
model proponents. However, if our results for the unsmoothed density field are qualitatively
similar to the skewness evolution for the smoothed field, then we can make some general
comments about the sort of constraints which observations of skewness place on deviations
from Gaussxa.mty in the initial conditions. The observations do not directly constrain the
initial skewness sq, since the contribution from sy evolves away, as shown in equation (19).
Rather, the observations bound the rather messy expression shown in this equation. The
observation that s depends linearly on o, as it appears to do in the IRAS data examined by
Bouchet et al. (1993) is consistent with non-Gaussian models as long as the second term in
equation (19) or (35) dominates the first. For non-Gaussian models which have zero initial
skewness but nonzero kurtosis (i.e., models with a symmetric density distribution), s will
evolve exactly proportional to ¢; the only effect of the non-Gaussianity on the skewness will -
be the effect of 7y on the constant of proportionality as shown in equation (19). Some of
these conclusions have been noted by Luo & Schramm (1993) for several special cases.

Finally, we finish with some instructive lower bounds. The last term in equation (6) is
positive, so that

¢ 2 o(0) + [3 £5(0) + mo(0)] (38)

From the Schwarz inequality, {6%) > (62 )2, so that 3£2(0) + n(0) > £2(0), we further
obtain

¢2 o(0) + 2 £(0) | (39)

Although equation (38) is the stronger bound, equation (39) is useful, because it shows that
even for density fields with 7 < 0, the contribution from the four-point function can never
be so negative as to cause { to decrease with time. Thus, in second-order perturbation
theory, (:increases with time for all initial density fields. This agrees with physi?:al intuition:
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gravitational clustering leads to a small number of high density regions and a relatively larger
volume of low density regions, regardless of initial conditions.

Parts of this work were done while the authors enjoyed the hospitality of the Aspen
Center for Physics. J.N.F. was supported in part by the DOE and by NASA (grant NAGW-
2381) at Fermilab. R.J.S. was supported in part by the DOE (DE-ACO02-76ER01545) and
by NASA (NAGW-2589).

Table 1

Numerical Values for I[n] /n(0)

&(x) I{¢] I{nr] I{ng] I[n4]

1/(1+z) 0.667 0.121 0.122 0.101
exp(~z) 0.667 0.114 0.111 0.093
1/(1 +2?) - 0.667: 0.104 0.094 0.065

exp(—z2) 0.667 0.092 0.072 0.046
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